

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Run Offline Demo

Apollo provides a method to run simulation if you do not have the required hardware.

Set up the docker release environment by following the instructions in the Install docker section of the Build and Release from Sources page.

Setup steps:

	Start the docker release environment using the command:

bash docker/scripts/release_start.sh

	Enter the docker release environment:

bash docker/scripts/release_into.sh

	Now you can play the rosbag in docs/demo_guide/demo.bag using the command:

rosbag play docs/demo_guide/demo.bag --loop

The --loop option enables rosbag to keep playing the bag in a loop playback mode.

	Open Chrome and go to localhost:8887 to access Apollo HMI, which opens the screen below.
[image:]

	Click ‘Dreamview’ switch in the right middle panel.
[image:]

	Click upper-right “Dreamview” button to open Dreamview.
[image:]

	Dreamview is loaded in browser with address localhost:8888.
[image:]The car in Dreamview is happy to move around in the screen!

Congratulations!

How to add a new GPS Receiver

Introduction

GPS receiver is a device that receives information from GPS satellites and then calculates the device’s geographical position, velocity and precise time. The device usually includes a receiver, an IMU, an interface to a wheel encoder, and a fusion engine that combines information from those sensors. The default GPS receiver used in Apollo is Novatel cards. The purchase of the instruction is to demonstrate how to use a new GPS Receiver.

Steps to add a new GPS Receiver

Please follow the steps below to add a new GPS Receiver.

	implement the new data parser for new GPS receiver, by inheritating class Parser.

	add new interfaces in Parser class for the new GPS receiver

	in config.proto, add the new data format for the new GPS receiver

	in function create_parser from file data_parser.cpp, add new parser instance for new GPS receiver

Assuming that we would like to add a new GPS Receiver: u-blox.

Step 1: implement the new data parser for new GPS receiver, by inheritating class Parser

class UbloxParser : public Parser {
public:
 UbloxParser();

 virtual MessageType get_message(MessagePtr& message_ptr);

private:
 bool verify_checksum();

 Parser::MessageType prepare_message(MessagePtr& message_ptr);

 // The handle_xxx functions return whether a message is ready.
 bool handle_esf_raw(const ublox::EsfRaw* raw, size_t data_size);
 bool handle_esf_ins(const ublox::EsfIns* ins);
 bool handle_hnr_pvt(const ublox::HnrPvt* pvt);
 bool handle_nav_att(const ublox::NavAtt *att);
 bool handle_nav_pvt(const ublox::NavPvt* pvt);
 bool handle_nav_cov(const ublox::NavCov *cov);
 bool handle_rxm_rawx(const ublox::RxmRawx *raw);

 double _gps_seconds_base = -1.0;

 double _gyro_scale = 0.0;

 double _accel_scale = 0.0;

 float _imu_measurement_span = 0.0;

 int _imu_frame_mapping = 5;

 double _imu_measurement_time_previous = -1.0;

 std::vector<uint8_t> _buffer;

 size_t _total_length = 0;

 ::apollo::drivers::gnss::Gnss _gnss;
 ::apollo::drivers::gnss::Imu _imu;
 ::apollo::drivers::gnss::Ins _ins;
};

Step 2: add new interfaces in Parser class for the new GPS receiver

Add the function create_ublox in Parser class:

class Parser {
public:
 // Return a pointer to a NovAtel parser. The caller should take ownership.
 static Parser* create_novatel();

 // Return a pointer to a u-blox parser. The caller should take ownership.
 static Parser* create_ublox();

 virtual ~Parser() {}

 // Updates the parser with new data. The caller must keep the data valid until get_message()
 // returns NONE.
 void update(const uint8_t* data, size_t length) {
 _data = data;
 _data_end = data + length;
 }

 void update(const std::string& data) {
 update(reinterpret_cast<const uint8_t*>(data.data()), data.size());
 }

 enum class MessageType {
 NONE,
 GNSS,
 GNSS_RANGE,
 IMU,
 INS,
 WHEEL,
 EPHEMERIDES,
 OBSERVATION,
 GPGGA,
 };

 // Gets a parsed protobuf message. The caller must consume the message before calling another
 // get_message() or update();
 virtual MessageType get_message(MessagePtr& message_ptr) = 0;

protected:
 Parser() {}

 // Point to the beginning and end of data. Do not take ownership.
 const uint8_t* _data = nullptr;
 const uint8_t* _data_end = nullptr;

private:
 DISABLE_COPY_AND_ASSIGN(Parser);
};

Parser* Parser::create_ublox() {
 return new UbloxParser();
}

Step 3: in config.proto, add the new data format definition for the new GPS receiver

Add UBLOX_TEXT and UBLOX_BINARY in the config file: modules/drivers/gnss/proto/config.proto

message Stream {
 enum Format {
 UNKNOWN = 0;
 NMEA = 1;
 RTCM_V2 = 2;
 RTCM_V3 = 3;

 NOVATEL_TEXT = 10;
 NOVATEL_BINARY = 11;

 UBLOX_TEXT = 20;
 UBLOX_BINARY = 21;
 }
... ...

Step 4: in function create_parser from file data_parser.cpp, add new parser instance for new GPS receiver

Add code to process config::Stream::UBLOX_BINARY as below:

Parser* create_parser(config::Stream::Format format, bool is_base_station = false) {
 switch (format) {
 case config::Stream::NOVATEL_BINARY:
 return Parser::create_novatel();

 case config::Stream::UBLOX_BINARY:
 return Parser::create_ubloxl();

 default:
 return nullptr;
 }
}

How to Add a New CAN Card

Introduction

The Controller Area Network (CAN) is a network used intensively in many microcontrollers and devices to transfer data between devices without the assistance of a host computer.

The default CAN card used in Apollo is the ESD CAN-PIC card. You can add a new CAN card using the steps below.

Add a New CAN Card

Complete the following required task sequence to add a new CAN card:

	Implement the CanClient class of the new CAN card.

	Register the new CAN card in CanClientFactory.

	Update the config file.

The examples below show how to add a new CAN card – EXAMPLE CAN card.

Implement the CanClient Class of the New CAN Card

Use the following code to implement the specific CANClient class:

#include <string>
#include <vector>

#include "hermes_can/include/bcan.h"
#include "modules/canbus/can_client/can_client.h"
#include "modules/canbus/common/canbus_consts.h"
#include "modules/common/proto/error_code.pb.h"

/**
 * @namespace apollo::canbus::can
 * @brief apollo::canbus::can
 */
namespace apollo {
namespace canbus {
namespace can {

/**
 * @class ExampleCanClient
 * @brief The class which defines a Example CAN client which inherits CanClient.
 */
class ExampleCanClient : public CanClient {
 public:
 /**
 * @brief Initialize the Example CAN client by specified CAN card parameters.
 * @param parameter CAN card parameters to initialize the CAN client.
 * @return If the initialization is successful.
 */
 bool Init(const CANCardParameter& parameter) override;

 /**
 * @brief Destructor
 */
 virtual ~ExampleCanClient() = default;

 /**
 * @brief Start the Example CAN client.
 * @return The status of the start action which is defined by
 * apollo::common::ErrorCode.
 */
 apollo::common::ErrorCode Start() override;

 /**
 * @brief Stop the Example CAN client.
 */
 void Stop() override;

 /**
 * @brief Send messages
 * @param frames The messages to send.
 * @param frame_num The amount of messages to send.
 * @return The status of the sending action which is defined by
 * apollo::common::ErrorCode.
 */
 apollo::common::ErrorCode Send(const std::vector<CanFrame>& frames,
 int32_t* const frame_num) override;

 /**
 * @brief Receive messages
 * @param frames The messages to receive.
 * @param frame_num The amount of messages to receive.
 * @return The status of the receiving action which is defined by
 * apollo::common::ErrorCode.
 */
 apollo::common::ErrorCode Receive(std::vector<CanFrame>* const frames,
 int32_t* const frame_num) override;

 /**
 * @brief Get the error string.
 * @param status The status to get the error string.
 */
 std::string GetErrorString(const int32_t status) override;

 private:
 ...
 ...
};

} // namespace can
} // namespace canbus
} // namespace apollo

Register the New CAN Card in CanClientFactory

Add the following code to CanClientFactory:

void CanClientFactory::RegisterCanClients() {
 Register(CANCardParameter::ESD_CAN,
 []() -> CanClient* { return new can::EsdCanClient(); });

 // register the new CAN card here.
 Register(CANCardParameter::EXAMPLE_CAN,
 []() -> CanClient* { return new can::ExampleCanClient(); });
}

Update the config File

Add the EXAMPLE_CAN into /modules/canbus/proto/can_card_parameter.proto

message CANCardParameter {
 enum CANCardBrand {
 FAKE_CAN = 0;
 ESD_CAN = 1;
 EXAMPLE_CAN = 2; // add new CAN card here.
 }

}

Update /modules/canbus/conf/canbus_conf.pb.txt

... ...
can_card_parameter {
 brand:EXAMPLE_CAN
 type: PCI_CARD // suppose the new can card is PCI_CARD
 channel_id: CHANNEL_ID_ZERO // suppose the new can card has CHANNEL_ID_ZERO
}
... ...

How to Add a New Control Algorithm

The control algorithm in Apollo consists of one or more controllers that can be easily changed or replaced with different algorithms. Each controller outputs one or more control commands to canbus. The default control algorithm in Apollo contains a lateral controller (LatController) and a longitudinal controller (LonController). They are responsible for the vehicle control in the lateral and longitudinal directions respectively.

A new control algorithm does not have to follow the default pattern, e.g., one lateral controller + one longitudinal controller. It could be a single controller or a combination of any number of controllers.

Complete the following tasks sequence to add a new control algorithm:

	Create a controller.

	Add a new controller configuration into the control_fig file.

	Register the new controller.

Create a Controller

All controllers must inherit the base class Controller, which defines a set of interfaces. Here is an example of a controller implementation:

namespace apollo {
namespace control {

class NewController : public Controller {
 public:
 NewController();
 virtual ~NewController();
 Status Init(const ControlConf* control_conf) override;
 Status ComputeControlCommand(
 const localization::LocalizationEstimate* localization,
 const canbus::Chassis* chassis, const planning::ADCTrajectory* trajectory,
 ControlCommand* cmd) override;
 Status Reset() override;
 void Stop() override;
 std::string Name() const override;
};
} // namespace control
} // namespace apollo

Add a New Controller Configuration to the control_config File

To add the new controller configuration complete the following steps:

	Define a proto for the new controller configurations and parameters based on the algorithm requirements. A example proto definition of LatController can be found at: modules/control/proto/lat_controller_conf.proto

	After defining the new controller proto, e.g., new_controller_conf.proto, type the following:

syntax = "proto2";

package apollo.control;

message NewControllerConf {
 double parameter1 = 1;
 int32 parameter2 = 2;
}

	Update control_conf.proto at modules/control/proto/control_conf.proto with the following line of code:

optional apollo.control.NewControllerConf new_controller_conf = 15;

	Update ControllerType in this file:

enum ControllerType {
 LAT_CONTROLLER = 0;
 LON_CONTROLLER = 1;
 NEW_CONTROLLER = 2;
 };

	When the protobuf definition is completed, update the control configuration file accordingly at modules/control/conf/lincoln.pb.txt

Note: The above control/conf file is the default for Apollo. Your project may use a different control configuration file.

Register a New Controller

To activate a new controller in the Apollo system, register the new controller in ControllerAgent. Go to:

modules/control/controller/controller_agent.cc

Type your registration information in the shell. For example:

void ControllerAgent::RegisterControllers() {
 controller_factory_.Register(
 ControlConf::NEW_CONTROLLER,
 []() -> Controller * { return new NewController(); });
}

After this code update sequence is completed, you new controller should take effect in the Apollo system.

How to Add a New Vehicle

Introduction

The instructions below demonstrate how to add a new vehicle to Apollo.

Note: The Apollo control algorithm is configured for the default vehicle, which is a Lincoln MKZ.

When adding a new vehicle, if your vehicle requires different attributes from those offered by the Apollo control algorithm, consider:

	Using a different control algorithm that is appropriate for your vehicle.

	Modifying the existing algorithm parameters to achieve better results.

Add a New Vehicle

Complete the following task sequence to add a new vehicle:

	Implement the new vehicle controller.

	Implement the new message manager.

	Implement the new vehicle factory.

	Update the configuration file.

Implement the New Vehicle Controller

The new vehicle controller is inherited from the VehicleController class. An example header file is provided below.

/**
 * @class NewVehicleController
 *
 * @brief this class implements the vehicle controller for a new vehicle.
 */
class NewVehicleController final : public VehicleController {
 public:
 /**
 * @brief initialize the new vehicle controller.
 * @return init error_code
 */
 ::apollo::common::ErrorCode Init(
 const VehicleParameter& params, CanSender* const can_sender,
 MessageManager* const message_manager) override;

 /**
 * @brief start the new vehicle controller.
 * @return true if successfully started.
 */
 bool Start() override;

 /**
 * @brief stop the new vehicle controller.
 */
 void Stop() override;

 /**
 * @brief calculate and return the chassis.
 * @returns a copy of chassis. Use copy here to avoid multi-thread issues.
 */
 Chassis chassis() override;

 // more functions implemented here
 ...

};

Implement the New Message Manager

The new message manager is inherited from the MessageManager class. An example header file is provided below.

/**
 * @class NewVehicleMessageManager
 *
 * @brief implementation of MessageManager for the new vehicle
 */
class NewVehicleMessageManager : public MessageManager {
 public:
 /**
 * @brief construct a lincoln message manager. protocol data for send and
 * receive are added in the contruction.
 */
 NewVehicleMessageManager();
 virtual ~NewVehicleMessageManager();

 // define more functions here.
 ...
};

Implement the New Vehicle Factory Class.

The new vehicle factory class is inherited from the AbstractVehicleFactory class. An example header file is provided below.

/**
 * @class NewVehicleFactory
 *
 * @brief this class is inherited from AbstractVehicleFactory. It can be used to
 * create controller and message manager for lincoln vehicle.
 */
class NewVehicleFactory : public AbstractVehicleFactory {
 public:
 /**
 * @brief destructor
 */
 virtual ~NewVehicleFactory() = default;

 /**
 * @brief create lincoln vehicle controller
 * @returns a unique_ptr that points to the created controller
 */
 std::unique_ptr<VehicleController> CreateVehicleController() override;

 /**
 * @brief create lincoln message manager
 * @returns a unique_ptr that points to the created message manager
 */
 std::unique_ptr<MessageManager> CreateMessageManager() override;
};

An example .cc file is provided below.

std::unique_ptr<VehicleController>
NewVehicleFactory::CreateVehicleController() {
 return std::unique_ptr<VehicleController>(new lincoln::LincolnController());
}

std::unique_ptr<MessageManager> NewVehicleFactory::CreateMessageManager() {
 return std::unique_ptr<MessageManager>(new lincoln::LincolnMessageManager());
}

Apollo provides the base class ProtocolData that can be used to implement the protocols of the new vehicle.

Register the New Vehicle

Register the new vehicle in modules/canbus/vehicle/vehicle_factory.cc. An example header file is provided below.

void VehicleFactory::RegisterVehicleFactory() {
 Register(VehicleParameter::LINCOLN_MKZ, []() -> AbstractVehicleFactory* {
 return new LincolnVehicleFactory();
 });

 // register the new vehicle here.
 Register(VehicleParameter::NEW_VEHICLE_BRAND, []() -> AbstractVehicleFactory* {
 return new NewVehicleFactory();
 });
}

Update the config File

Update the config file modules/canbus/conf/canbus_conf.pb.txt to activate the new vehicle in the Apollo system.

vehicle_parameter {
 brand: NEW_VEHICLE_BRAND
 // put other parameters below
 ...
}

How to Add a New External Dependency

A design and implementation goal is to minimize the dependency that must be pre-installed in the system. If your target depends on a module for which you have to apt-get install first, consider using bazel as the package/dependency management system.

For example if you want to add a workspace rule foo that is not originally built with bazel, do the following:

	Add a workspace rule named ‘foo’ in the WORKSPACE file.

	Specify the source of foo (usually a URL), and the version (usually a commit hash or a git tag).

	Write a foo.BUILD under a third_party directory to build it. The BUILD file will be similar to any other bazel BUILD file of your own targets.

	In your target that depends on foo, put @foo://:<foo_target> in its dependencies.

Use Bazel to Add an External Dependency

If you add a workspace rule foo using bazel to build your target, depending on foo, bazel pulls the source code of foo from the source specified, and builds it with foo.BUILD. If foo was originally built with bazel, then only the workspace rule is needed.

Click on the following links for a more detailed description on adding a dependency with bazel:
Workspace Rules [https://bazel.build/versions/master/docs/be/workspace.html],
Working with external dependencies.

Build and Release

	1. Install Docker

	2. Build and Release

	3. Test

Install Docker

The system requirement for building Apollo is Ubuntu 14.04. Docker container is the simplest way to set up the build environment for Apollo project. Detailed docker tutorial is here [https://docs.docker.com/].

sudo docker/scripts/install_docker.sh

Build and Release

Start container

We provide a build image named dev-latest. Container will mount your local apollo repo to /apollo.

bash docker/scripts/dev_start.sh

Get into container

bash docker/scripts/dev_into.sh

Build modules

bash apollo.sh build

Release binaries

bash apollo.sh release

This will generate a release directory, which contains ROS environment, running scripts, binaries and dependent shared libraries (.so files).

To create a release excluding proprietary software (such as ESD CAN library), do:

bash apollo.sh release_noproprietary

Generate release image

bash apollo_docker.sh gen

This will create a new docker image with the release directory. The release image will be named as release-yyyymmdd_hhmm. Meanwhile, your most recent built image will be taged as release-latest. The docker_release needed to be executed outside of container.

Push docker images

bash apollo_docker.sh push

The command will push your most recent release docker image to the docker hub.

Test

bash docker/scripts/release_start.sh [release tag]

The HMI will automatically start and you can control each apollo module through any web browser by inputing IP address and port number, such as localhost:8887. You can get into the release container if quick fix needed.

bash docker/scripts/release_into.sh

Legal Disclaimer

The docker image that you build may contain ESD CAN library files provided by ESD Electronics (hereby referred as ESD), which you should have obtained via a licensing agreement with ESD. The licensing agreement shall have granted you (as an individual or a business entity) the right to use the said software provided by ESD; however, you may (and likely you do) need explicit re-distribution permission from ESD to publish the docker image for any other third party to consume. Such licensing agreement is solely between you and ESD, and is not covered by the license terms of the Apollo project (see file LICENSE under Apollo top directory).

How to Contribute to Apollo

Contributor License Agreements

You are welcome to contribute to project Apollo. To contribute to apollo, you have to agree with the Apollo individual contributor license agreement [https://gist.githubusercontent.com/startcode/f5ccf8887bfc7727a0ae05bf0d601e30/raw/029a11300e987e34a29a9d247ac30caa7f6741a7/Apollo_Individual_Contributor_License_Agreement].

How to start contribute

You can follow the standard github approach [https://help.github.com/articles/using-pull-requests/] to contribute code.
There are issues with label “help wanted” [https://github.com/ApolloAuto/apollo/labels/help%20wanted] that are best to get started.
If you decided to work on an issue, you can leave a message in that issue to let other people know that you are working on it.

Before sending your pull request for
review [https://github.com/ApolloAuto/apollo/pulls],
make sure your changes follow the coding style, license and testing guidelines.

License

For each new file, please include a license at the top of the file.

	C++ code License example adapter.h [https://github.com/ApolloAuto/apollo/blob/master/modules/common/adapters/adapter.h];

	Python code License example diagnostics.py [https://github.com/ApolloAuto/apollo/blob/master/modules/tools/diagnostics/diagnostics.py];

	Bash code License example apollo_base.sh [https://github.com/ApolloAuto/apollo/blob/master/scripts/apollo_base.sh];

Testing

Please include unit tests for the contributed code to prove that your code works correctly,
and make sure that your code does not break existing tests. Test files are always ended with test.cc, and the test target names in BUILD file are always ended with test.
Here is an example test file adapter_test.cc [https://github.com/ApolloAuto/apollo/blob/master/modules/common/adapters/adapter_test.cc].

You can use command bash apollo.sh test to run all unit tests.

Coding style

	C/C++ coding style: Apollo adopted the Google C++ Style Guide [https://google.github.io/styleguide/cppguide.html]. Make sure your code conforms to this style guide. You can use command bash apollo.sh check to check if your code has any style problem.

	Python coding style: Apollo adopted the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html]. You can use the yapf [https://github.com/google/yapf] command yapf -i --style='{based_on_style: google}' foo.py to format a file foo.py.

	BUILD coding style : you can use command bash apollo.sh buildify to format your BUILD files before submit.

Documentation

If your code is not straightforward for other contributors to understand, it is recommended to implement the code in a clear and efficient way, and provide sufficient documentation.
Apollo uses doxygen to help generate formatted API Document with command bash apollo.sh doc.
Document your code following this guide How to document code.

Commit Message

The first line of commit message should be a one-line summary of the change.
A paragraph can be added following the summary to clearly explain the details of the change.
If your code fixed a issue, add the issue number.
The following is a commit message example:

Replace algorithm A with algorithm B in apollo/modules/control.

Algorithm B is faster than A because it uses binary search. The runtime is reduced from O(N) to O(log(N)).

Fixes #1234

How to Debug a Dreamview Start Problem

Steps to start Dreamview

If you encounter problems when starting Dreamview in the docker/scripts/dev sequence, first check if you are using the correct commands as shown below.

$ bash docker/scripts/dev_start.sh
$ bash docker/scripts/dev_into.sh
$ cd /apollo
$ bash apollo.sh build
$ bash scripts/dreamview.sh

Dreamview Fails to Start

If Dreamview fails to start, use the script below to check the Dreamview startup log and restart Dreamview.

check dreamview startup log
$ cat data/log/dreamview.out
terminate called after throwing an instance of 'CivetException'
 what(): null context when constructing CivetServer. Possible problem binding to port.

$ sudo apt-get install psmisc

to check if dreamview is running from other terminal
$ sudo lsof -i :8888

kill other running/pending dreamview
$ sudo fuser -k 8888/tcp

restart dreamview again
$ bash scripts/dreamview.sh

How to document source code for doxygen

Developers who are not familiar with doxygen can get more information from its official website http://www.stack.nl/~dimitri/doxygen/.

We use time.h [https://github.com/ApolloAuto/apollo/blob/master/modules/common/time/time.h] as an example to explain how to document.

file

/**
 * @file
 *
 * @brief This library provides the utilities to deal with timestamps.
 * currently our assumption is that every timestamp will be of a
 * precision at 1 us.
 */

namespace

/**
 * @namespace apollo::common::time
 * @brief apollo::common::time
 */
namespace apollo {
namespace common {
namespace time {

class

/**
 * @class Clock
 * @brief a singleton clock that can be used to get the current current
 * timestamp. The source can be either system clock or a mock clock.
 * Mock clock is for testing purpose mainly. The mock clock related
 * methods are not thread-safe.
 */
class Clock {
 public:
 ...

function

/**
 * @brief Set the behavior of the \class Clock.
 * @param is_system_clock if provided with value TRUE, further call
 * to Now() will return timestamp based on the system clock. If
 * provided with FALSE, it will use the mock clock instead.
 */
 static void UseSystemClock(bool is_system_clock) {
 Clock::instance()->is_system_clock_ = is_system_clock;
 }

public / protected class member variables

/// Stores the currently set timestamp, which serves mock clock
/// queries.
Timestamp mock_now_;

How to save and load docker image

Considering the docker image is more than one Gigabyte, it is better to generate or download the docker image in the WIFI environment and then copy the image to cars.

Save Docker Image

After generating or downloading a docker image, you can save the docker image into a local tar file.

e.g.

docker save -o <save image to path> <image name>
docker save -o apollo_img.tar apolloauto/apollo:release-latest

Load Docker Image

After copying the tar file to the car, you need to load the docker image from the tar file.

e.g.

docker load -i <path to image tar file>
docker load -i apollo_img.tar

how to add c++ style check to one directory?

	in BUILD file, at the top, add the following line

load("//tools:cpplint.bzl", "cpplint")

	in BUILD file, at the bottom, add the following line

cpplint()

	run apollo.sh check to verify if the directory passes style check.

Please use the BUILD [https://github.com/ApolloAuto/apollo/blob/master/modules/canbus/BUILD] file of canbus module as an example.

load("//tools:cpplint.bzl", "cpplint")

package(default_visibility = ["//visibility:public"])

cc_library(
 name = "canbus_lib",
 srcs = ["canbus.cc"],
 hdrs = ["canbus.h"],
 deps = [
 "//modules/canbus/can_client:can_client_factory",
 "//modules/canbus/can_comm:can_receiver",
 "//modules/canbus/can_comm:can_sender",
 "//modules/canbus/vehicle:vehicle_factory",
 "//modules/common",
 "//modules/common:apollo_app",
 "//modules/common/adapters:adapter_manager",
 "//modules/common/monitor",
 "//modules/hmi/utils:hmi_status_helper",
],
)

cc_test(
 name = "canbus_test",
 size = "small",
 srcs = ["canbus_test.cc"],
 deps = [
 "//modules/canbus:canbus_lib",
 "@gtest//:main",
],
)

cc_binary(
 name = "canbus",
 srcs = ["main.cc"],
 deps = [
 ":canbus_lib",
 "//external:gflags",
 "//modules/canbus/can_client",
 "//modules/canbus/common:canbus_common",
 "//modules/common:log",
 "//modules/common/monitor",
 "//third_party/ros:ros_common",
],
)

filegroup(
 name = "canbus_testdata",
 srcs = glob(["testdata/**"]),
)

cpplint()

How to troubleshoot ESD CAN device?

Problem

Can’t communicate through ESD CAN card.

Troubleshooting Steps:

	Make sure CAN driver (kernel module) is loaded, run: lsmod |grep can; you should see information regarding the kernel driver such as version number if CAN driver has been loaded.

	Make sure CAN device is present and has the right permission set, run: ls -l /dev/can0.

	Check kernel log (run dmesg |grep -i can) and syslog (run grep -i can /var/log/syslog), see if there are error messages related to CAN.

	Run Apollo program esdcan_test_app (under monitor/hwmonitor/hw/tools/), which will print out detailed stats and status information.

	To learn about this tool, run esdcan_test_app --help.

	To print more detailed stats, run ```sudo esdcan_test_app –details=true``.

	Optional: save kernel log, syslog (Step 4) and output from Step 5 for offline analysis.

	If necessary, check system ambient temperature. ESD CAN card (CAN-PCIe/402-FD) has a working temperature range of 0-75 degree Celsius; it may not work outside of this temperature range. You may also attach a temperature sensor to the surface of the main IC chip on ESD CAN (an Altera FPGA chip) to monitor the surface temperature of the chip to make sure it is not overheating.

How to Tune Control Parameters

Introduction

The objective of the control module is to generate control commands to the vehicle based on planning trajectory and the current car status.

Background

Input / Output

Input

	Planning trajectory

	Current car status

	HMI driving mode change request

	Monitor System

Output

The output control command governs functions such as steering, throttle, and brake in the canbus.

Controller Introduction

The controllers include a lateral controller that manages the steering commands and a longitudinal controller that manages the throttle and brakes commands .

Lateral Controller

The lateral controller is an LQR-Based Optimal Controller. The dynamic model of this controller is a simple bicycle model with side slip. It is divided into two categories, including a closed loop and an open loop.

	The closed loop provides discrete feedback LQR controller with 4 states:

	Lateral Error

	Lateral Error Rate

	Heading Error

	Heading Error Rate

	The open loop utilizes the path curvature information to cancel the constant steady state heading error.

Longitudinal Controller

The longitudinal controller is configured as a cascaded PID + Calibration table. It is divided into two categories, including a closed loop and an open loop.

	The closed loop is a cascaded PID (station PID + Speed PID), which takes the following data as controller input:

	Station Error

	Speed Error

	The open loop provides a calibration table which maps acceleration onto throttle/brake percentages.

Controller Tuning

Useful tools

Tool for diagnosing and realtime plotting can be found under apollo/modules/tools/.

Lateral Controller Tuning

The lateral controller is designed for minimal tuning effort. The basic lateral controller tuning steps for all vehicles are:

	Set all elements in matrix_q to zero.

	Increase the third element of matrix_q, which defines the heading error weighting, to minimize the heading error.

	Increase the first element of matrix_q, which defines the lateral error weighting to minimize the lateral error.

Tune a Lincoln MKZ

For a Lincoln MKZ, there are four elements that refer to the diagonal elements of the state weighting matrix Q:

	Lateral error weighting

	Lateral error rate weighting

	Heading error weighting

	Heading error rate weighting

Tune the weighting parameters by following the basic lateral controller tuning steps listed above in Lateral Controller Tuning. An example is shown below.

lat_controller_conf {
 matrix_q: 0.05
 matrix_q: 0.0
 matrix_q: 1.0
 matrix_q: 0.0
}

Tune Additional Vehicle Types

When tuning a vehicle type that is other than a Lincoln MKZ, first update the vehicle-related physical parameters as shown in the example below. Then, follow the basic lateral controller tuning steps listed above in Lateral Controller Tuning and define the matrix Q parameters.

An example is shown below.

lat_controller_conf {
 cf: 155494.663
 cr: 155494.663
 wheelbase: 2.85
 mass_fl: 520
 mass_fr: 520
 mass_rl: 520
 mass_rr: 520
 eps: 0.01
 steer_transmission_ratio: 16
 steer_single_direction_max_degree: 470
}

Longitudinal Controller Tuning

The longitudinal controller is composed of Cascaded PID controllers that include one station controller and a high/low speed controller with different gains for different speeds. Apollo manages tuning in open loop and closed loop by:

	OpenLoop: Calibration table generation.

	Closeloop: Based on the order of High Speed Controller -> Low Speed Controller -> Station Controller.

High/Low Speed Controller Tuning

The high speed controller code is used mainly to track the desired speed above a certain speed value. For example:

high_speed_pid_conf {
 integrator_enable: true
 integrator_saturation_level: 0.3
 kp: 1.0
 ki: 0.3
 kd: 0.0
}

	First set the values for kp, ki, and kd to zero.

	Then start to increase kp to reduce the rising time of step response to velocity changes.

	Finally, increase ki to reduce velocity controller steady state error.

Once you obtain relatively accurate speed tracking performance for the higher speed, you can start tuning the low speed PID controller for a comfortable acceleration rate from the start point.

low_speed_pid_conf {
 integrator_enable: true
 integrator_saturation_level: 0.3
 kp: 0.5
 ki: 0.3
 kd: 0.0
}

Note: Apollo usually sets the switch speed to be a coasting speed when the gear switches to Drive.

Station Controller Tuning

Apollo uses the station controller for the vehicle to track the station error between the vehicle trajectory reference and the vehicle position. A station controller tuning example is shown below.

station_pid_conf {
 integrator_enable: true
 integrator_saturation_level: 0.3
 kp: 0.3
 ki: 0.0
 kd: 0.0
}

References

	“Vehicle dynamics and control.” Rajamani, Rajesh. Springer Science & Business Media, 2011.

	“Optimal Trajectory generation for dynamic street scenarios in a Frenet
Frame”, M. Werling et., ICRA2010

How to Update Vehicle Calibration for Throttle and Brakes

Introduction

The purpose of vehicle calibration is to find the throttle and brake commands that accurately produce the amount of acceleration requested from the control module.

Preparation

Preparation consists of the following task sequence:

	Gain access to the relevant code.

	Change the driving mode.

	Select the testing site.

Gain Access to the Relevant Code

	Canbus, which includes modules for:

	GPS Driver

	Localization

Change the Driving Mode

Set the driving mode in modules/canbus/conf/canbus_conf.pb.txt to AUTO_SPEED_ONLY.

Select the Testing Site

The preferred testing site is a long flat road.

Update the Vehicle Calibration

After preparation, complete the following task sequence from modules/tools/calibration:

	Collect data.

	Process data.

	Plot results.

	Convert results to protobuf.

Collect Data

	Run python data_collector.py {dir}/{command}.txt for different commands. Run each command multiple times.

	Adjust the command script based on the vehicle response.

	Run python plot_data.py {dir}/{command}.txt_recorded.csv> to visualize collected data.

Process Data

Run process_data.sh on each recorded log individually. Each data log is processed and appended to result.csv.

Plot Results

Run python plot_results.py result.csv to visualize final results. Check for any abnormality.

Convert Results to Protobuf

If everything looks good, run result2pb.sh to move calibration results to protobuf defined for the control module.

Apollo 1.0 Hardware and System Installation Guide

	About This Guide

	Document Conventions

	Introduction

	Documentation

	Key Hardware Components

	Additional Components Required

	Onboard Computer System - IPC

	IPC Configuration

	IPC Front and Rear Views

	Controller Area Network (CAN) Card

	Global Positioning System (GPS) and Inertial Measurement Unit (IMU)

	Option 1: The NovAtel SPAN-IGM-A1

	Option 2: The NovAtel SPAN ProPak6 and NovAtel IMU-IGM-A1

	The GPS Receiver/Antenna

	Overview of the Installation Tasks

	Steps for the Installation Tasks

	At the Office

	Preparing the IPC

	Installing the Software for the IPC

	In the Vehicle

	Prerequisites

	Diagrams of the Major Component Installations

	Installing the GPS Receiver and Antenna

	Installing the IPC

	Configuring the GPS and IMU

	Setting up the Network

	Recommendations

	Additional Tasks Required

	Next Steps

About This Guide

The Apollo 1.0 Hardware and System Installation Guide provides the instructions to install all of the hardware components and system software for the **Apollo Project **. The system installation information included pertains to the procedures to download and install the Apollo Linux Kernel.

Document Conventions

The following table lists the conventions that are used in this document:

Icon	Description
———————————–	—————————————-
Bold	Emphasis
Mono-space font	Code, typed data
Italic	Titles of documents, sections, and headings Terms used
[image: info]	Info Contains information that might be useful. Ignoring the Info icon has no negative consequences.
[image: tip]	Tip. Includes helpful hints or a shortcut that might assist you in completing a task.
[image: online]	Online. Provides a link to a particular web site where you can get more information.
[image: warning]	Warning. Contains information that must not be ignored or you risk failure when you perform a certain task or step.

Introduction

The Apollo Project is an initiative that provides an open, complete, and reliable software platform for Apollo partners in the automotive and autonomous driving industries. The aim of this project is to enable these entities to develop their own self-driving systems based on Apollo software stack.

Documentation

The following set of documentation describes Apollo 1.0:

	[Apollo Hardware and System Installation Guide] ─ Provides the instructions to install the hardware components and the system software for the vehicle:

	Vehicle:

	Industrial PC (IPC)

	Global Positioning System (GPS)

	Inertial Measurement Unit (IMU)

	Controller Area Network (CAN) card

	Hard drive

	GPS Antenna

	GPS Receiver

	Software:

	Ubuntu Linux

	Apollo Linux Kernel

	[Apollo Quick Start Guide] ─ A combination tutorial and roadmap that provide the complete set of end-to-end instructions. The Quick Start Guide also provides links to additional documents that describe the conversion of a regular car to an autonomous-driving vehicle.

Key Hardware Components

The key hardware components to install include:

	Onboard computer system ─ Neousys Nuvo-5095GC

	Controller Area Network (CAN) Card ─ ESD CAN-PCIe/402-1

	General Positioning System (GPS) and Inertial Measurement Unit (IMU) ─
You can select one of the following options:

	NovAtel SPN-IGM-A1

	NovAtel SPAN® ProPak6™ and NovAtel IMU-IGM-A1

Additional Components Required

You need to provide these additional components for the Additional Tasks Required:

	A 4G router for Internet access

	A monitor, keyboard, and mouse for debugging at the car onsite

	Cables: Video Graphics Array (VGA) connector, a Digital Visual Interface (DVI) cable (optional)

	Apple iPad Pro: 9.7-inch, Wi-Fi (optional)

The features of the key hardware components are presented in the subsequent sections.

Onboard Computer System - IPC

The onboard computer system is an industrial PC (IPC) for the autonomous vehicle and uses the NeousysNuvo-5095GC that is powered by a sixth-generation Intel Skylake core i7-6700 CPU.

The Neousys Nuvo-5095GC is the central unit of the autonomous driving system (ADS).

IPC Configuration

Configure the IPC as follows:

	32GB DDR4 RAM

	MezIO-V20-EP module (with ignition control for in-vehicle usage)

	PO-160W-OW 160W AC/DC power adapter

	CSM2 module (x16 PCIe expansion Gen3 8-lane cassette)

IPC Front and Rear Views

The front and rear views of the IPC are shown with the Graphics Processing Unit (GPU) installed in the following pictures:

The front view of the Nuvo-5095GC:

[image: ipc_front]

The rear view of the Nuvo-5095GC:

[image: ipc_back]

For more information about the Nuvo-5095GC, see:

[image: online]
Neousys Nuvo-5095GC Product Page:

http://www.neousys-tech.com/en/product/application/gpu-computing/product/nuvo-5095gc-gpu-computer
[image: online]

Neousys Nuvo-5095GC-Manual:

http://www.neousys-tech.com/en/support/resources/category/162-manual

Controller Area Network (CAN) Card

The CAN card to use with the IPC is ESD CAN-PCIe/402.

[image: can_card]

For more information about the CAN-PCIe/402, see:

[image: online] ESD CAN-PCIe/402 Product Page:

https://esd.eu/en/products/can-pcie402

Global Positioning System (GPS) and Inertial Measurement Unit (IMU)

There are two GPS-IMU options available,and the choice depends upon the one that most fits your needs:

	Option 1: NovAtel SPAN-IGM-A1

	**Option 2: NovAtel SPAN® ProPak6™ and NovAtel IMU-IGM-A1 **

Option 1: The NovAtel SPAN-IGM-A1

The NovAtel SPAN-IGM-A1 is an integrated, single-box solution that offers tightly coupled Global Navigation Satellite System (GNSS) positioning and inertial navigation featuring the NovAtel OEM615 receiver.

[image: novatel_imu]

For more information about the NovAtel SPAN-IGM-A1, see:

[image: online] NovAtel SPAN-IGM-A1 Product Page:

https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-igm-a1/

Option 2: The NovAtel SPAN ProPak6 and NovAtel IMU-IGM-A1

NovAtel ProPak6 is a standalone GNSS receiver. It works with a separate NovAtel- supported IMU (in this case, the NovAtel IMU-IGM-A1)to provide localization.

The ProPak6 provides the latest and most sophisticated enclosure product manufactured by NovAtel.

The IMU-IGM-A1 is an IMU that pairs with a SPAN-enabled GNSS receiver such as the SPAN ProPak6.

[image: novatel_pp6]

For more information about the NovAtel SPAN ProPak6 and the IMU-IGM-A1, see:

[image: online] NovAtel ProPak6 Installation & Operation Manual:

https://www.novatel.com/assets/Documents/Manuals/OM-20000148.pdf

[image: online]NovAtel IMU-IGM-A1 Product Page:

https://www.novatel.com/products/span-gnss-inertial-systems/span-imus/span-mems-imus/imu-igm-a1/#overview

The GPS Receiver/Antenna

The GPS Receiver/Antenna used with the GPS-IMU component is the NovAtel GPS-703-GGG-HV.

**NOTE: **The GPS NovAtelGPS-703-GGG-HV works with either model of the two GPS-IMU options that are described in the previous section, Global Positioning System (GPS) and Inertial Measurement Unit (IMU).

[image: gps_receiver]

For more information about the NovAtel GPS-703-GGG-HV, see:

[image: online] NovAtel GPS-703-GGG-HV Product Page:

https://www.novatel.com/products/gnss-antennas/high-performance-gnss-antennas/gps-703-ggg-hv/

Overview of the Installation Tasks

Installing the hardware and the software components involves these tasks:

AT THE OFFICE:

	Prepare the IPC:
a. Examine the Graphics Processing Unit (GPU) cassette to determine if you need to remove the GPU card (if it was pre-installed).
b. Prepare and then install the Controller Area Network (CAN) card by first repositioning the CAN card termination jumper before you insert the card into the slot.

	Install the hard drive (if none was pre-installed) in the IPC.

You can also choose to replace a pre-installed hard drive if you prefer.

Recommendations :

	Install a Solid-State Drive (SSD) for better reliability.

	Use a high-capacity drive if you need to collect driving data.

	Prepare the IPC for powering up:
a. Attach the power cable to the power connector (terminal block).
b. Connect the monitor, Ethernet, keyboard, and mouse to the IPC.
c. Connect the IPC to a power source.

	Install the software on the IPC (some Linux experience is required):
a. Install Ubuntu Linux.
b. Install the Apollo Linux kernel.

IN THE VEHICLE:

	Make sure that all the modifications for the vehicle, which are listed in the section Prerequisites, have been performed.

	Install the major components (according to the illustrations and the instructions included in this document):

	GPS Antenna

	IPC

	GPS Receiver

The actual steps to install all of the hardware and software components are detailed in the section, Steps for the Installation Tasks.

Steps for the Installation Tasks

This section describes the steps to install:

	The key hardware and software components

	The hardware in the vehicle

At the Office

Perform these tasks:

	Prepare the IPC:

	Install the CAN card

	Install or replace the hard drive

	Prepare the IPC for powering up

	Install the software for the IPC:

	Ubuntu Linux

	Apollo Kernel

Preparing the IPC

Follow these steps:

	In the IPC, examine the GPU cassette to determine if there is a pre-installed GPU card, which you need to remove:

a. Turn over the IPC to unscrew the four screws (shown in the purple squares) on the bottom of computer that are holding the GPU cassette in place:

[image: ipc_gpu_cassette]

b. Remove the GPU cassette from the IPC:

[image: ipc_gpu_cassette_remove]

c. Remove the GPU cassette from the IPC: Unscrew three additional screws (shown in the purple circles) on the bottom of the GPU cassette to open the cover:

[image: ipc_gpu_cassette_unscrew]

d. Remove the GPU card (if installed):

[image: ipc_gpu_remove]

	Prepare and install the CAN card:

a. Set the CAN card termination jumper by removing the red jumper cap (shown in yellow circles) from its default location and placing it at its termination position:

[image: prepare_can_card]

[image: warning]WARNING: The CAN card will not work if the termination jumper is not set correctly.

b. Insert the CAN card into the slot in the IPC:

[image: insert_can_card]

c. Reinstall the GPU cassette in the IPC:

[image: reinstall_gpu_cassette]

	Install or replace the hard drive.

You need to install one or two 2.5” SSD or hard drives if none have been pre-installed. As an alternative, you might want to replace a pre-installed hard drive with one of your own (say, an SSD).

[image: tip_icon] An SSD drive is highly recommended for better reliability. Also consider using a high-capacity drive if you need to collect driving data.

To install the hard drive:

a. Unscrew the three screws (shown in the purple circles) to open the hard drive cover (caddy):

[image: hard_drive_unscrew]

b. Install the drive in the caddy (as shown with an Intel SSD):

[image: tip_icon] Observe the way the hard drive is situated in the caddy for the installation.
The Serial Advanced Technology Attachment (SATA) and the power connectors should be placed in the caddy facing the end that has the two screw holes showing.

[image: hard_drive]

The hard drive in the caddy is now connected:

[image: hard_drive_connect]

c. Reinstall the SSD caddy in the IPC:

[image: reinstall_ssd]

	Prepare the IPC for powering up:

a. Attach the power cable to the power connector(terminal block) that comes with the IPC:

[image: warning_icon]WARNING: Make sure that the positive(labeled R for red) and the negative(labeled B for black) wires of the power cable are inserted into the correct holes on the power terminal block.

[image: ipc_power_RB]

b. Connect the monitor, Ethernet cable, keyboard, and mouse to the IPC:

[image: ipc_power_back]

​

[image: tip_icon]It is recommended that you use a Video Graphics Array (VGA) connector for the monitor for these reasons:

	If you do not see any screen display when the IPC boots up, switch to the VGA input. The Neousys Nuvo-5095GC IPC always outputs to a VGA port even if there is no monitor connected. Consequently, the Linux installer might “elect” to output to a VGA port instead of a DVI port.

	If you do not see a dialog window during the installation process when using a dual-monitor setup, try switching between VGA and DVI to find it. The Linux installer might detect two monitors and use them both.

For better display quality, you have the option to:

	Connect to another monitor using a DVI cable, or a High-Definition Multimedia Interface (HMI) with DVI-HMI adapter

	Use the DVI/HDMI port on the same monitor

c. Connect the power:

[image: ipc_connect_power]

Installing the Software for the IPC

This section describes the steps to install:

	Ubuntu Linux

	Apollo Kernel

[image: tip_icon]It is assumed that you have experience working with Linux to successfully perform the software installation.

Installing Ubuntu Linux

Follow these steps:

	Create a bootable Ubuntu Linux USB flash drive:

Download Ubuntu (or a variant such as Xubuntu) and follow the online instructions to create a bootable USB flash drive.

[image: tip_icon]It is recommended that you use Ubuntu 14.04.3.

[image: tip_icon]You can type F2 during the system boot process to enter the BIOS settings. It is recommended that you disable Quick Boot and Quiet Boot in the BIOS to make it easier to catch any issues in the boot process.

For more information about Ubuntu, see:
[image: online_icon] Ubuntu for Desktop web site:

https://www.ubuntu.com/desktop

	Install Ubuntu Linux:

a. Insert the Ubuntu installation drive into a USB port and turn on the system.
b. Install Linux by following the on-screen instructions.

	Perform a software update and the installation:
a. Reboot into Linux after the installation is done.
b. Launch the Software Updater to update to the latest software packages (for the installed distribution) or type the following commands in a terminal program such as GNOME Terminal.

sudo apt-get update; sudo apt-get upgrade

c. Launch a terminal program such as GNOME Terminal and type the following command to install the Linux 4.4 kernel:

sudo apt-get install linux-generic-lts-xenial

[image: tip_icon]The IPC must have Internet access to update and install software. Make sure that the Ethernet cable is connected to a network with Internet access. You might need to configure the network for the IPC if the network that it is connected to is not using the Dynamic Host Configuration Protocol (DHCP).

Installing the Apollo Kernel

The Apollo runtime in the vehicle requires the Apollo Kernel [https://github.com/ApolloAuto/apollo-kernel]. You are strongly recommended to install the pre-built kernel.

Use pre-built Apollo Kernel.

You get access and install the pre-built kernel with the following commands.

	Download the release packages from the release section on github

https://github.com/ApolloAuto/apollo-kernel/releases

	Install the kernel
After having the release package downloaded:

tar zxvf linux-4.4.32-apollo-1.0.0.tar.gz
cd install
sudo ./install_kernel.sh

	Build the ESD CAN driver source code

Now you need to build the ESD CAN driver source code according to ESDCAN-README.md [https://github.com/ApolloAuto/apollo-kernel/blob/master/linux/ESDCAN-README.md]

	Reboot your system by the reboot command:

Build your own kernel.

If have modified the kernel, or the pre-built kernel is not the best for your platform, you can build your own kernel with the following steps.

	Clone the code from repository

git clone https://github.com/ApolloAuto/apollo-kernel.git
cd apollo-kernel

	Add the ESD CAN driver source code according to ESDCAN-README.md [https://github.com/ApolloAuto/apollo-kernel/blob/master/linux/ESDCAN-README.md]

	Build the kernel with the following command.

bash build.sh

	Install the kernel the same way as using a pre-built Apollo Kernel.

Optional: Test the ESD CAN device node

After rebooting the IPC with the new kernel:

a. Create the CAN device node by issuing the following commands in a terminal:

cd /dev; sudo mknod –-mode=a+rw can0 c 52 0

b. Test the CAN device node using the test program that is part of the ESD CAN software package that you have acquired from ESD Electronics.

The IPC is now ready to be mounted on the vehicle.

In the Vehicle

Perform these tasks:

	Make the necessary modifications to the vehicle as specified in the list of prerequisites

	Install the major components:

	GPS Antenna

	IPC

	GPS Receiver

Prerequisites

[image: warning_icon]WARNING: Prior to mounting the major components (GPS Antenna, IPC, and GPS Receiver) in the vehicle, certain modifications must be performed as specified in the list of prerequisites. The instructions for making the mandatory changes in the list are outside the scope of this document.

The list of prerequisites are as follows:

	The vehicle must be modified for “drive-by-wire” technology by a professional service company. Also, a CAN interface hookup must be provided in the trunk where the IPC will be mounted.

	A power panel must be installed in the trunk to provide power to the IPC and the GPS-IMU. The power panel would also service other devices in the vehicle such as a 4G LTE router. The power panel should be hooked up to the power system in the vehicle.

	A custom-made rack must be installed to mount the GPS-IMU Antenna on top of the vehicle.

	A custom-made rack must be installed to mount the GPS-IMU in the trunk.

	A 4G LTE router must be mounted in the trunk to provide Internet access for the IPC. The router must have built-in Wi-Fi access point (AP) capability to connect to other devices, such as an iPad, to interface with the autonomous driving (AD) system. A user would be able to use the mobile device to start AD mode or monitor AD status, for example.

Diagrams of the Major Component Installations

The following two diagrams indicate the locations of where the three major components (GPS Antenna, IPC, and GPS Receiver) should be installed on the vehicle:

[image: major_compoment_side_view]

[image: major_component_rear_view]

Installing the GPS Receiver and Antenna

This section provides general information about installing one of two choices:

	**Option 1: **GPS-IMU: NovAtel SPAN-IGM-A1

	Option 2: GPS-IMU: NovAtel SPAN® ProPak6™ and NovAtel IMU-IGM-A1

Option 1: Installing the NovAtel SPAN-IGM-A1

The installation instructions describe the procedures to mount, connect, and take the lever arm measurements for the GPS-IMU NovAtel SPAN-IGM-A1.

Mounting

You can place the GPS-IMU NovAtel SPAN-IGM-A1 in most places in the vehicle but it is suggested that you follow these recommendations:

	Place and secure the NovAtel SPAN-IGM-A1 inside the trunk with the Y-axis pointing forward.

	Mount the NovAtel GPS-703-GGG-HV antenna in an unobscured location on top of the vehicle.

Wiring

You must connect two cables:

	The antenna cable ─ Connects the GNSS antenna to the antenna port of the SPAN-IGM-A1

	The main cable:

	Connects its 15-pin end to the SPAN-IGM-A1

	Connects its power wires to a power supply of 10-to-30V DC

	Connects its serial port to the IPC. If the power comes from a vehicle battery, add an auxiliary battery (recommended).

[image: imu_main_cable_connection]

Main Cable Connections

For more information, see the SPAN-IGM™ Quick Start Guide, page 3, for a detailed diagram:

[image: online_icon]SPAN-IGM™ Quick Start Guide

http://www.novatel.com/assets/Documents/Manuals/GM-14915114.pdf

Taking the Lever Arm Measurement

When the SPAN-IGM-A1 and the GPS Antenna are in position,the distance from the SPAN-IGM-A1 to the GPS Antenna must be measured. The distance should be measured as: X offset, Y offset, and Z offset.

The error of offset must be within one centimeter to achieve high accuracy. For more information, see the SPAN-IGM™ Quick Start Guide, page 5, for a detailed diagram.

For an additional information about the SPAN-IGM-A1, see:

[image: online_icon]SPAN-IGM™ User Manual:

http://www.novatel.com/assets/Documents/Manuals/OM-20000141.pdf

Option 2: Installing NovAtel SPAN® ProPak6™ and NovAtel IMU-IGM-A1

The installation instructions describe the procedures to mount, connect, and take the lever arm measurements for the GPS NovAtel SPAN® ProPak6™ and the NovAtel IMU-IGM-A1.

Components for the Installation

The components that are required for the installation include:

	NovAtel GPS SPAN ProPak6

	NovAtel IMU-IGM-A1

	NovAtel GPS-703-GGG-HV Antenna

	NovAtel GPS-C006 Cable (to connect antenna to GPS)

	NovAtel 01019014 Main Cable (to connect GPS to a serial port the IPC)

	Data Transport Unit (DTU) – similar to a 4G router

	Magnetic adapters (for antenna and DTU)

	DB9 Straight Through Cable

Mounting

You can place the two devices, the ProPak6 and the IMU, inmost places in the vehicle but it is suggested that you follow these recommendations:

	Place and secure the ProPak6 and the IMU side-by-side inside the trunk with the Y-axis pointing forward.

	Mount the NovAtel GPS-703-GGG-HV antenna on top of the vehicle or on top of the trunk lid as shown:

[image: gps_receiver_on_car]

	Use a magnetic adapter to tightly attach the antenna to the trunk lid.

	Install the antenna cable in the trunk by opening the trunk and placing the cable in the space between the trunk lid and the body of the car.

Wiring

Follow these steps to connect the ProPak6 GNSS Receiver and the IMU to the Apollo system:

	Use the split cable that comes with IMU-IGM-A1 to connect the IMU Main port and theProPak6 COM3/IMU port.

	Use a USB-A-to-MicroUSB cable to connect the USB port of the IPC and the MicroUSB port of the ProPak6.

	Connect the other end of the IMU-IGM-A1 split cable to the vehicle power.

	Connect the GNSS antenna to Propak6.

	Connect the Propak6 power cable.

[image: wiring]

For more information about the NovAtel SPAN ProPak6, see:

[image: online_icon]NovAtel ProPak6 Installation& Operation Manual:

https://www.novatel.com/assets/Documents/Manuals/OM-20000148.pdf

Installingthe IPC

Follow these steps:

	Use a power cable to connect the vehicle power source to the IPC:

Use its power connector as one end [image: ipc_power_RB] , and connect the other end to the power panel in the vehicle(see the section, Prerequisites).

	Place the onboard computer system, the 5059GC,inside the trunk (recommended).

For example, Apollo 1.0 uses 4x4 self-tapping screws to bolt the 5059GC to the carpeted floor of the trunk. [image: IPC-bolt_down-936x720]

	Mount the IPC so that its front and back sides(where all ports are located) face the right side (passenger) and the left side(driver) of the trunk.

This positioning makes it easier to connect all of the cables.

For more information, see:

[image: online_icon]Neousys Nuvo-5095GC – Manual:

http://www.neousys-tech.com/en/support/resources/category/162-manual

	Connect all cables, which include:

	Power cable

	Controller Area Network (CAN) cable

	Ethernet cable from the 4G router to the IPC

	GPS Receiver to the IPC

	(Optional) Monitor, keyboard, mouse

a. Connect the power cable to the IPC (as shown):

[image: IPC-power-842x636]

b. Connect the other end of the power cable to the vehicle battery (as shown):

[image: IPC-power-cable]

c. Connect the DB9 cable to the IPC to talk to the CAN (as shown):

[image: DB9_cable]

d. Connect:

	the Ethernet cable from the 4G router to the IPC (labeled as Router)

	the GPS Receiver to the IPC (labeled as GPSIMU)

	(optional) the monitor (labeled as Monitor):

[image: ipc_other_cables]

Taking the Lever Arm Measurement

Follow these steps:

	Before taking the measurement, turn on the IPC.

	When the IMU and the GPS Antenna are in position, the distance from the IMU to the GPS Antenna must be measured. The distance should be measured as: X offset, Yoffset, and Z offset.

The error of offset must be within one centimeter to achieve high accuracy in positioning and localization.

For an additional information, see:

[image: online_icon]NovAtel ProPak6 Installation & Operation Manual:

https://www.novatel.com/assets/Documents/Manuals/OM-20000148.pdf

[image: online_icon]NovAtel SPAN-IGM-A1 Product Page:

https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-igm-a1/

Configuring the GPS and IMU

Configure the GPS and IMU as shown:

WIFICONFIGSTATE OFF
UNLOGALLTHISPORT
SETIMUTOANTOFFSET0.00 1.10866 1.14165 0.05 0.05 0.08
SETINSOFFSET0 0 0
LOGCOM2 GPRMC ONTIME 1.0 0.25
EVENTOUTCONTROLMARK2 ENABLE POSITIVE 999999990 10
EVENTOUTCONTROLMARK1 ENABLE POSITIVE 500000000 500000000
LOGNCOM1 GPGGA ONTIME 1.0

logbestgnssposb ontime 0.5
logbestgnssvelb ontime 0.5
logbestposb ontime 0.5
logINSPVASB ontime 0.01
logCORRIMUDATASB ontime 0.01
logINSCOVSB ontime 1
logmark1pvab onnew

logimutoantoffsetsb once
logvehiclebodyrotationb onchanged

SAVECONFIG

For ProPak6:

WIFICONFIG STATE OFF
CONNECTIMU COM3 IMU_ADIS16488
INSCOMMAND ENABLE
SETIMUORIENTATION 5
ALIGNMENTMODE AUTOMATIC
SETIMUTOANTOFFSET 0.00 1.10866 1.14165 0.05 0.05 0.08
VEHICLEBODYROTATION 0 0 0

COM COM1 9600 N 8 1 N OFF OFF
COM COM2 9600 N 8 1 N OFF OFF
INTERFACEMODE COM1 NOVATEL NOVATEL OFF
LOG COM2 GPRMC ONTIME 1 0.25
PPSCONTROL ENABLE POSITIVE 1.0 10000
MARKCONTROL MARK1 ENABLE POSITIVE
EVENTINCONTROL MARK1 ENABLE POSITIVE 0 2

interfacemode usb2 rtcmv3 none off
rtksource auto any
psrdiffsource auto any

SAVECONFIG

[image: warning_icon] WARNING: Modify the SETIMUTOANTOFFSET line based on the actual measurement (of the antenna and the IMU offset).

For example:

SETIMUTOANTOFFSET -0.05 0.5 0.8 0.05 0.05 0.08

Setting up the Network

This section provides recommendations for setting up the network.

The IPC that is running the Apollo software must access the Internet to acquire the Real Time Kinematic (RTK) data for accurate localization. A mobile device also needs to connect to the IPC to run the Apollo software.

Recommendations

Itis recommended that you set up your network according to the following diagram:

[image: 4G_network_setup]

Follow these steps:

	Install and configure a 4G LTE router with Wi-Fi Access Point (AP) capability and Gigabit Ethernet ports.

	Connect the IPC to the LTE router using an Ethernet cable.

	Configure the LTE router to access the Internet using the LTE cellular network.

	Configure the AP capability of the LTE router so that the iPad Pro or another mobile device can connect to the router, and, in turn, connect to the IPC.

[image: tip_icon]It is recommended that you configure a fixed IP instead of using DHCP on the IPC to make it easier to connect to it from a mobile terminal.

Additional Tasks Required

Youwill use the components that you were required to provide to perform the following tasks:

	Connect a monitor using the DVI or the HDMI cables and connect the keyboard and mouse to perform debugging tasks at the car onsite.

	Establish a Wi-Fi connection on the Apple iPad Pro to access the HMI and control the Apollo ADS that is running on the IPC.

Next Steps

After you complete the hardware installation in the vehicle, see the Apollo Quick Start [https://github.com/ApolloAuto/apollo/blob/master/docs/quickstart/apollo_1_0_quick_start.md] for the steps to complete the software installation.

Apollo 1.0 Quick Start Guide

Contents

	About This Guide

	Document Conventions

	Overview of Apollo

	Description of the Vehicle Environment

	Hardware Installation

	Apollo Software Installation

	Download Apollo Source

	Set up Docker Support

	Set up Apollo Release Docker Image

	Customize Your Release Container

	Run the Demo on Vehicle

	Launch the Local Release Docker Image

	Record the Driving Trajectory

	Perform Autonomous Driving

	Shut Down

	Run Offline Demo

About This Guide

The Apollo 1.0 Quick Start Guide provides all of the basic instructions to understand, install, and build Apollo.

Document Conventions

The following table lists the conventions that are used in this document:

Icon	Description
———————————–	—————————————-
Bold	Emphasis
Mono-space font	Code, typed data
Italic	Titles of documents, sections, and headings Terms used
[image: info]	Info Contains information that might be useful. Ignoring the Info icon has no negative consequences.
[image: tip]	Tip. Includes helpful hints or a shortcut that might assist you in completing a task.
[image: online]	Online. Provides a link to a particular web site where you can get more information.
[image: warning]	Warning. Contains information that must not be ignored or you risk failure when you perform a certain task or step.

Overview of Apollo

Apollo has been initiated to provide an open, comprehensive, and reliable software platform for its partners in the automotive and autonomous-driving industries. Partners can use the Apollo software platform and the reference hardware that Apollo has certified as a template to customize in the development of their own autonomous vehicles.

Apollo 1.0, also referred to as the Automatic GPS Waypoint Following, works in an enclosed venue such as a test track or parking lot. It accurately replays a trajectory and the speed of that trajectory that a human driver has traveled in an enclosed, flat area on solid ground.

At this stage of development, Apollo 1.0 cannot perceive obstacles in close proximity, drive on public roads, or drive in areas without GPS signals.

Description of the Vehicle Environment

The Lincoln MKZ, enhanced by Autonomous Stuff, provides users with an accessible autonomous vehicle platform. The platform supplies users with a comprehensive stack of hardware and software solutions.

Users gain direct access to vehicle controls such as gear selection, speed, and indicator lights. Software interfaces have been created for steering, braking, acceleration, and gear selection to provide Developers with a workable user interface.

Additional features include:

	Power distributor terminals

	Integrated PC with ROS pre-installed and configured

	Emergency Stop using a drive-by-wire system

	Ethernet network and USB connections (to PC)

Hardware Installation

Please refer to Apollo 1.0 Hardware and System Installation Guide [https://github.com/ApolloAuto/apollo/blob/master/docs/quickstart/apollo_1_0_hardware_system_installation_guide.md]
for the steps to install the hardware components and the system software.

Apollo Software Installation

This section includes:

	Download the Apollo Release Package

	Set up Docker Support

	Customize Your Release Container

Before getting started, please make sure you have installed the Ubuntu Linux 14.04.3 and the Apollo Kernel following the steps in the
Apollo 1.0 Hardware and System Installation Guide [https://github.com/ApolloAuto/apollo/blob/master/docs/quickstart/apollo_1_0_hardware_system_installation_guide.md].

Download Apollo Source

	Download Apollo source code from the github source [https://github.com/ApolloAuto/apollo/]:

git clone git@github.com:ApolloAuto/apollo.git
cd apollo

	Set up environmen variable APOLLO_HOME by the following command:

echo "export APOLLO_HOME=$(pwd)" >> ~/.bashrc && source ~/.bashrc

	Open a new terminal or run source ~/.bashrc in an existing terminal.

[image: tip] In the following sections, it is assumed that the Apollo directory is located in $APOLLO_HOME.

Set up Docker Support

The Docker container is the simplest way to set up the build environment for Apollo.

For more information, see the detailed Docker tutorial here [https://docs.docker.com/].

	Run the following command to install Docker:

cd $APOLLO_HOME
bash docker/scripts/install_docker.sh

	After the script completes, log out and then log back into the system to enable Docker.

	(Optional) If you already have Docker installed (before you installed the Apollo Kernel), add the following line in /etc/default/docker:

DOCKER_OPTS = "-s overlay"

Customize Your Release Container

	Download and start the Apollo Release docker image by running the following commands:

cd $APOLLO_HOME
bash docker/scripts/release_start.sh

	Login into the Apollo Release docker image by running the following commands:

bash docker/scripts/release_into.sh

	Set up the zone number for the Global Navigation Satellite System (GNSS) Driver by modifying the following line in file ./ros/share/gnss_driver/launch/gnss_driver.launch.

<arg name="proj4_text" default="+proj=utm +zone=10 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs " />

You only have to modify the value +zone=10 in the above line.
Please refer to the
Apollo’s Coordinate System [https://github.com/ApolloAuto/apollo/blob/master/docs/specs/coordination.pdf] to find your local zone number.
For example, if you are in Beijing, China, you have to set +zone=50.

	Set up the Real Time Kinematic (RTK) Base Station for the GNSS Driver by modifying the file: ./ros/share/gnss_driver/conf/gnss_conf_mkz.txt

Refer to the following example for a typical RTK setup:

rtk_from {
 format: RTCM_V3
 ntrip {
 address: <provide your own value>
 port: <provide your own value>
 mount_point: <provide your own value>
 user: <provide your own username>
 password: <provide your own password>
 timeout_s: <provide your own value, e.g., 5>
 }
}
rtk_to {
 format: RTCM_V3
 serial {
 device: <provide your own value, e.g., "/dev/ttyUSB1">
 baud_rate: <provide your own value, e.g., 115200>
 }
}

The rtk_from is used for RTK base station information.

The rtk_to is used to send the RTK differential data to the receiver.

	Add ESD CAN Support

Please refer to ESD CAN README [https://github.com/ApolloAuto/apollo/blob/master/third_party/can_card_library/esd_can/README.md]
to setup the ESD CAN library.

	Follow these steps to persist your local changes:

RUN OUT OF DOCKER ENV
commit your docker local changes to local docker image.
exit # exit from docker environment
cd $APOLLO_HOME
bash docker/scripts/release_commit.sh

Run Demo on Vehicle

This section provides the instructions to run the Apollo 1.0 Demo on Vehicle.

	Set up the hardware:

	Power-on the platform vehicle.

	Power-on the Industrial PC (IPC).
[image:]

	Power-on the modem by pressing and holding the power button until the lights turn on.

	Set up the network configuration for the IPC: static IP (for example, 192.168.10.6), subnet mask (for example, 255.255.255.0), and gateway (for example, 192.168.10.1)

	Configurate your DNS server IP (for example, 8.8.8.8).

	Use a tablet to access Settings and connect to MKZ wifi:

[image:]

	Start the HMI in Docker using Chrome only:

[image: warning]Warning: Make sure that you are not starting HMI from two Docker containers concurrently.

Launch the Local release env Docker Image

Run the following commands:

cd $APOLLO_HOME
bash docker/scripts/release_start.sh local

When Docker starts, it creates a port mapping, which maps the Docker internal port 8887 to the host port 8887. You can then visit the HMI web service in your host machine browser:

Open the Chrome browser and start the Apollo HMI by going to 192.168.10.6:8887.
[image:]

Record the Driving Trajectory

Follow these steps to record the driving trajectory:

	In the Apollo HMI, under Quick Record, click Setup to start all modules and perform the hardware health check.
[image:]

	If the hardware health check passes, click the Start button to start to record the driver trajectory.
[image:]

	After arriving at a destination, click the Stop button to stop recording.
[image:]

	If you want to record a different trajectory, click the New button to initiate recording again.
[image:]

Perform Autonomous Driving

Follow these steps to perform autonomous driving:

	In the Apollo HMI, under Quick Play, click Setup to start all modules and perform a hardware health check.
[image:]

	If the vehicle successfully passes the Setup step, it is ready to enter the Autonomous mode. MAKE SURE DRIVER IS READY! Click the Start button to start the autonomous driving.

[image:]

	After arriving at your destination, click the Stop button to stop replaying the recorded trajectory.
[image:]

Shut Down

	Shut down the system from a terminal:
sudo shutdown now

	Power-off the IPC (locate the icon on the top right of the desktop to click Shut Down).

	Turn off the modem by pressing and holding the power button until the lights turn off.

	Turn off the car.

Run Offline Demo

Refer to Offline Demo Guide [https://github.com/ApolloAuto/apollo/blob/master/docs/demo_guide/README.md]

Apollo 1.0 Quick Start Guide for Developers

Contents

	About This Guide

	Introduction

	Build the Apollo Kernel

	Access the Apollo Dev Container

	Build the Apollo ROS

	Build Apollo

	Release

About This Guide

The Apollo 1.0 Quick Start for Developers provides the basic instructions to all Developers who want to build the Apollo Kernel, the Robot Operating System (ROS), and Apollo.

Document Conventions

The following table lists the conventions that are used in this document:

Icon	Description
———————————–	—————————————-
Bold	Emphasis
Mono-space font	Code, typed data
Italic	Titles of documents, sections, and headingsTerms used
[image: info]	Info Contains information that might be useful. Ignoring the Info icon has no negative consequences.
[image: tip]	Tip. Includes helpful hints or a shortcut that might assist you in completing a task.
[image: online]	Online. Provides a link to a particular web site where you can get more information.
[image: warning]	Warning. Contains information that must not be ignored or you risk failure when you perform a certain task or step.

Introduction

It is assumed that you have read and performed the instructions in the companion guide, the Apollo 1.0 Quick Start Guide, to set up the basic environment. Use this guide to build your own version of the Apollo Kernel, the ROS, and Apollo. There are also instructions on how to release your own Apollo container to others who might want to build on what you have developed. It is strongly recommended that you build all of the components (Apollo Kernel, ROS, and Apollo) in the Apollo pre-specified dev Docker container.

Build the Apollo Kernel

The Apollo runtime in the vehicle requires the Apollo Kernel [https://github.com/ApolloAuto/apollo-kernel]. You are strongly recommended to install the pre-built kernel.

Use pre-built Apollo Kernel.

You get access and install the pre-built kernel with the following commands.

	Download the release packages from the release section on github

https://github.com/ApolloAuto/apollo-kernel/releases

	Install the kernel
After having the release package downloaded:

tar zxvf linux-4.4.32-apollo-1.0.0.tar.gz
cd install
sudo ./install_kernel.sh

	Build the ESD CAN driver source code

Now you need to build the ESD CAN driver source code according to ESDCAN-README.md [https://github.com/ApolloAuto/apollo-kernel/blob/master/linux/ESDCAN-README.md]

	Reboot your system by the reboot command:

Build your own kernel.

If have modifed the kernel, or the pre-built kernel is not the best for your platform, you can build your own kernel with the following steps.

	Clone the code from repository

git clone https://github.com/ApolloAuto/apollo-kernel.git
cd apollo-kernel

	Build the ESD CAN driver source code according to ESDCAN-README.md [https://github.com/ApolloAuto/apollo-kernel/blob/master/linux/ESDCAN-README.md]

	Build the kernel with the following command.

bash build.sh

	Intall the kernel the same way as using a pre-built Apollo Kernel.

Access the Apollo Dev Container

	Please follow the Quick Start Guide [https://github.com/ApolloAuto/apollo/blob/master/docs/quickstart/apollo_1_0_quick_start.md] to clone the Apollo source code.

[image: tip] In the following sections, it is assumed that the Apollo directory is located in $APOLLO_HOME.

	Apollo provides a build environment Docker image: dev-latest. Run the following command to start a container with the build image:

cd $APOLLO_HOME
bash docker/scripts/dev_start.sh

	Run the following command to log into the container:

bash docker/scripts/dev_into.sh

In the container, the default directory lives in /apollo , which contains the mounted source code repo.

Build the Apollo ROS

Check out Apollo ROS from github source [https://github.com/ApolloAuto/apollo-platform]:

git clone https://github.com/ApolloAuto/apollo-platform.git apollo-platform
cd apollo-platform/ros
bash build.sh build

Build Apollo

Before your proceed to build, please obtain ESD CAN library according to instructions in ESD CAN README [https://github.com/ApolloAuto/apollo/blob/master/third_party/can_card_library/esd_can/README.md].

Run the following command:

cd $APOLLO_HOME
bash apollo.sh build

Release

Apollo uses Docker images to release packages. For advanced developers: you can generate a new Docker image to test in an actual vehicle. Apollo has set up a base Docker image environment to test the Apollo build.

The image is called: run-env-latest.

	Run the following command:

bash apollo.sh release

The release command generates a release directory, which contains:

	ROS environment

	Running scripts

	Binaries

	Dependent shared libraries (.so files)

	Open a new terminal and run the following command in an Apollo source directory outside of Docker:

cd $APOLLO_HOME
bash apollo_docker.sh gen

The command creates a new Docker image using the release directory.

The release image tag will be named:release-yyyymmdd_hhmm. The existing release image tag, release-latest, is always pointing to the most current release.

	Push your release image online using your own Docker registry set up from outside of the container:

cd $APOLLO_HOME
bash apollo_docker.sh push

The command pushes the newly built Docker image to the release Docker registry. To set up a new Docker registry, see this page [https://docs.docker.com/registry].

 _static/comment-bright.png

_images/wiring.png

_static/ajax-loader.gif

_images/dv_trajectory.png
apollo . : ¢)
Left Right 3
® (1:

% AUTO
% 7
HMI Setup Notifications % L 4

Traffic Signal Accelerator Brake

_static/down-pressed.png

_images/gps_receiver.png

_static/down.png

_images/dreamview_enable.png
aeollo

Quick Start

Before recording, you need to setup the
system,

Quick Record:

= sup

Quick Play:

Setup Start Stop

Debug

Modules

GPS Driver
Control

CAN Bus

Localization

Apollo Data Record

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_static/comment-close.png

_images/dreamview_launch.png
aeollo

Quick Start

Before recording, you need to setup the
system,

Quick Record:

= sup

Quick Play:

Setup Start Stop

Debug

Modules

GPS Driver
Control
CAN Bus
Localization
Dreamview

Apollo Data Record

Hardware

GPS

CAN

Reset All

Check

Check

_static/comment.png

_images/hard_drive_connect.png

_images/hard_drive_unscrew.png
Hard Drive Cover

_images/gps_receiver_on_car.png

_images/hard_drive.png

_static/file.png

_images/hmi_play_setup.png
aeollo

Quick Start Debug Reset Al || Dreamview
Modules Hardware
Before playing, you need to check
[helysion: A~ GPS Driver GPS Check
Quick Record: e » Gt CAN Check
~ CAN Bus
Setup Start Stop I
A~ Localization
v v v

~ Dreamview
Quick Play:

= - -

A Apollo Data Record

_images/hmi_play_start.png
aeollo

Quick Start

Make sure the OPERATOR is ready!
Now you are good to go.

Quick Record: New

Setup Start Stop

v v v

Quick Play:

= = -

Debug

Modules

A~ GPS Driver
~ Control

~ CAN Bus

A~ Localization
~ Dreamview

A~ Apollo Data Record

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_images/Novatel_imu.png

_images/Novatel_pp6.png

_images/IPC-power-842x636.jpg

_images/IPC-power-cable.jpg

_images/can_card.png

_static/up-pressed.png

_images/hmi_play_stop.png
aeollo

Quick Start

Duration: 00:00:52

Quick Record: New

Setup Start Stop

v v v

Quick Play:

Setup Start

v v

Debug

Modules

A GPS Driver

~ Control

~ CAN Bus

A Localization

~ Dreamview

A Apollo Data Record

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_images/DB9_cable.png

_images/hmi_record_start.png
aeollo

Quick Start

Now you are ready to record.

Quick Record:

v
Quick Play:

Setup Start Stop

Debug

Modules

A~ GPS Driver
~ Control

~ CAN Bus

A~ Localization
~ Dreamview

A Apollo Data Record

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_images/IPC-bolt_down-936x720.jpg

_images/hmi_record_stop.png
aeollo

Quick Start Debug
Modules
Duration: 00:00:25

A GPS Driver

Quick Record: R —
~ CAN Bus

we oo [
v 4 A Localization
Quick Play: » DRy

A Apollo Data Record
Setup Start Stop

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_images/hmi_record_reset.png
aeollo

Quick Start Debug
Modules
Before playing, you need to check
[helysion: A~ GPS Driver
Quick Record: N ~ e
~ CAN Bus
Setup Start Stop -
~ ocalization
v v v

~ Dreamview
Quick Play:

= - -

A Apollo Data Record

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_images/4G_network_setup.png
Network Setup Diagram

_images/hmi_record_setup.png
aeollo

Quick Start

Before recording, you need to check
the system.

Quick Record:

Quick Play:

Setup Start Stop

Debug

Modules

A~ GPS Driver
~ Control

~ CAN Bus

A~ Localization
~ Dreamview

A Apollo Data Record

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_images/insert_can_card.png

_images/ipad_config_wifi.png

_images/imu_main_cable_connection.png

_images/info_icon.png

_images/ipc_back.png
..\Jllllllllllllllllv“

..w-wﬁ

l!h -

_static/minus.png

_images/ipc_connect_power.png

_images/ipc_front.png
"H“"l“"“"""l X3

s -l'uuii“

A4 o
= R

_images/ipc_gpu_cassette_unscrew.png

_images/ipc_gpu_remove.png

_images/ipc_gpu_cassette.png

_images/ipc_gpu_cassette_remove.png

_images/ipc_power_back.png
/I

LU MU AR
L A AR

<

_images/ipc_power_on.png

_images/ipc_other_cables.png

_images/ipc_power_RB.png

_images/major_component_rear_view.png
Rear View of Vehicle and Trunk

_images/online_icon.png

_images/major_compoment_side_view.png
Side View of Vehicle and Trunk

Inside of
the Trunk

Trunk
Liner

GPS
Receiver

_images/reinstall_ssd.png

_images/start_hmi.png
Apollo HMI Xiangquan

& C DO localhost

aeollo

Quick Start Debug Reset Al || Dreamview
Modules Hardware
Before recording, you need to check
the system. A GPS Driver GPS Check
Quick Record: A G e Check
~ CAN Bus

- sert SoP
A Localization

~ Dreamview

Quick Play:
A Apollo Data Record

Setup Start Stop

_images/prepare_can_card.png
Default Location Termination Position

_images/reinstall_gpu_cassette.png

_images/warning_icon.png

_images/start_hmi1.png
aeollo

Quick Start

Before recording, you need to check
the system.

Quick Record:

Quick Play:

Setup Start Stop

Debug

Modules

A~ GPS Driver
~ Control

~ CAN Bus

A~ Localization
~ Dreamview

A Apollo Data Record

Hardware

GPS

CAN

Reset All

Dreamview

Check

Check

_images/tip_icon.png

